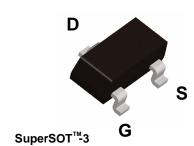
January 2001

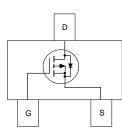
FDN304P

SEMICONDUCTOR IM

P-Channel 1.8V Specified PowerTrench[®] MOSFET

General Description


This P-Channel 1.8V specified MOSFET uses Fairchild's advanced low voltage PowerTrench process. It has been optimized for battery power management applications.


Applications

- Battery management
- Load switch
- Battery protection

Features

- -2.4 A, -20 V. $R_{DS(ON)} = 52 \text{ m}\Omega @ V_{GS} = -4.5 \text{ V}$ $R_{DS(ON)} = 70 \text{ m}\Omega @ V_{GS} = -2.5 \text{ V}$ $R_{DS(ON)} = 100 \text{ m}\Omega @ V_{GS} = -1.8 \text{ V}$
- Fast switching speed
- High performance trench technology for extremely low R_{DS(ON)}
- SuperSOTTM -3 provides low R_{DS(ON)} and 30% higher power handling capability than SOT23 in the same footprint

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units
V _{DSS}	Drain-Source Voltage		-20	V
V _{GSS}	Gate-Source Voltage		±8	V
I _D	Drain Current – Continuous	(Note 1a)	-2.4	A
	– Pulsed		-10	
PD	Maximum Power Dissipation	(Note 1a)	0.5	W
		(Note 1b)	0.46	
T _J , T _{STG}	Operating and Storage Junction Temperation	ature Range	-55 to +150	°C

merma	i onalacteristics			
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	250	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	75	°C/W

Package Marking and Ordering Information

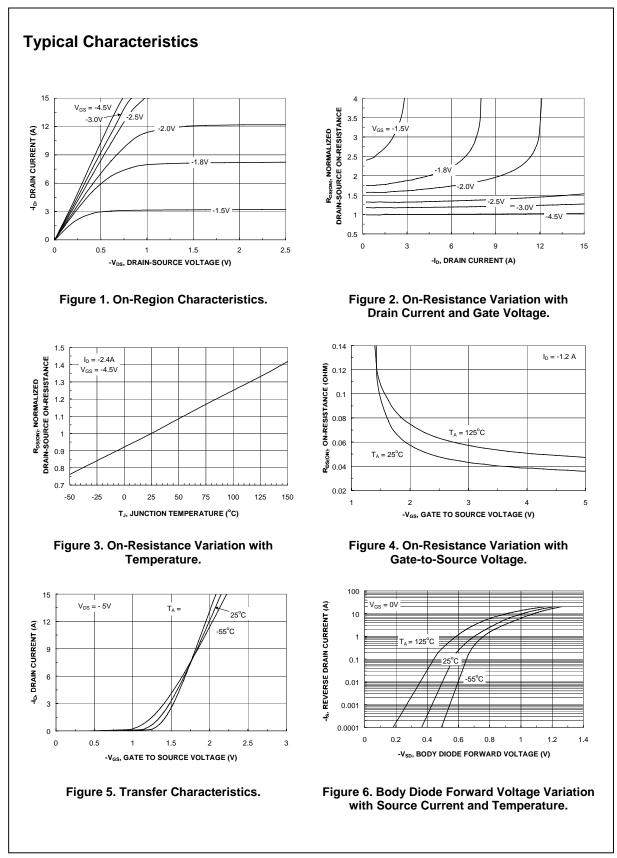
Device Marking	Device	Reel Size	Tape width	Quantity	
304P	FDN304P	7"	8mm	3000 units	

©2001 Fairchild Semiconductor Corporation

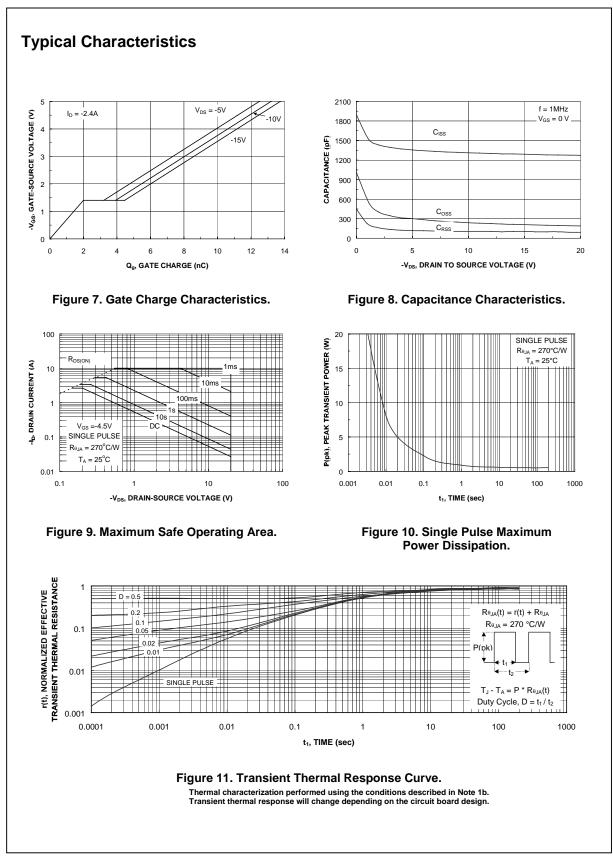
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V, I_D = -250 \mu A$	-20			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		-13		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -16 \text{ V}, V_{GS} = 0 \text{ V}$			-1	μA
I _{GSSF}	Gate-Body Leakage, Forward	$V_{GS} = 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			100	nA
I _{GSSR}	Gate-Body Leakage, Reverse	$V_{GS} = -8 \text{ V} \qquad V_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = -250 \ \mu A$	-0.4	-0.8	-1.5	V
$rac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu\text{A}, \text{Referenced to } 25^\circ\text{C}$		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{ll} V_{GS} = -4.5 \ V, & I_D = -2.4 \ A \\ V_{GS} = -2.5 \ V, & I_D = -2.0 \ A \\ V_{GS} = -1.8 \ V, & I_D = -1.8 \ A \end{array} $		36 47 65	52 70 100	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = -4.5 \text{ V}, \qquad V_{DS} = -5 \text{ V}$	-10			Α
g fs	Forward Transconductance	$V_{DS} = -5 V$, $I_D = -1.25 A$		12		S
Dynamic	c Characteristics					
C _{iss}	Input Capacitance	$V_{DS} = -10 V$, $V_{GS} = 0 V$,		1312		pF
Coss	Output Capacitance	f = 1.0 MHz		240		pF
C _{rss}	Reverse Transfer Capacitance			106		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time			15	27	ns
tr	Turn–On Rise Time			15	27	ns
t _{d(off)}	Turn–Off Delay Time			40	64	ns
t _f	Turn–Off Fall Time			25	40	ns
Qg	Total Gate Charge	$V_{DS} = -10 V$, $I_D = -2.4 A$,		12	20	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -4.5 V$		2		nC
Q _{gd}	Gate-Drain Charge			2		nC
Drain-S	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source				-0.42	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_{S} = -0.42$ (Note 2)		-0.6	-1.2	V

1. R_{0JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.

°


a) 250°C/W when mounted on a 0.02 in² pad of 2 oz. copper.

b) 270°C/W when mounted on a minimum pad.


6 Scale 1 : 1 on letter size paper

୶

2. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%

FDN304P

FDN304P

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DOME™ EcoSPARK™ E²CMOS[™] EnSigna™ FACT™ FACT Quiet Series[™] FAST[®]

FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ $I^2 C^{\mathsf{TM}}$ **ISOPLANAR™** LittleFET™ MicroFET™ MicroPak™ MICROWIRE™

OPTOLOGIC[®] **OPTOPLANAR™** PACMAN™ POP™ Power247™ PowerTrench[®] QFET™ QS™ QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER® SMART START™ VCX™ SPM™ Stealth™ SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®]

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER. NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	First Production

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC